References
Coleman, P. & Nevidomskyy, A. H. Frustration and the Kondo effect in heavy fermion materials. J. Low Temp. Phys. 161, 182–202 (2010).
Si, Q. Quantum criticality and global phase diagram of magnetic heavy fermions. Phys. Status Solidi 247, 476–484 (2010).
Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, 2003).
Jerome, D. & Bourbonnais, C. Quasi one-dimensional organic conductors: from Fröhlich conductivity and Peierls insulating state to magnetically-mediated superconductivity, a retrospective. C. R. Phys. 25, 17–178 (2024).
Wu, L. S. et al. Orbital-exchange and fractional quantum number excitations in an f-electron metal, Yb2Pt2Pb. Science 352, 1206–1210 (2016).
Pandey, A. et al. Correlations and incipient antiferromagnetic order within the linear Mn chains of metallic Ti4MnBi2. Phys. Rev. B 102, 014406 (2020).
Richter, C. G., Jeitschko, W., Künnen, B. & Gerdes, M. H. The ternary titanium transition metal bismuthides Ti4TBi2 with T = Cr, Mn, Fe, Co, and Ni. J. Solid State Chem. 133, 400–406 (1997).
Rytz, R. & Hoffmann, R. Chemical bonding in the ternary transition metal bismuthides Ti4TBi2 with T = Cr, Mn, Fe, Co, and Ni. Inorg. Chem. 38, 1609–1617 (1999).
Wada, H., Nakamura, H., Yoshimura, K., Shiga, M. & Nakamura, Y. Stability of Mn moments and spin fluctuations in RMn2 (R: rare earth). J. Magn. Magn. Mater. 70, 134–136 (1987).
Jin, Z. et al. Magnetic molecular orbitals in MnSi. Sci. Adv. 9, eadd5239 (2023).
Sirker, J. et al. J1–J2 Heisenberg model at and close to its z = 4 quantum critical point. Phys. Rev. B 84, 144403 (2011).
Furukawa, S., Sato, M., Onoda, S. & Furusaki, A. Ground-state phase diagram of a spin-1/2 frustrated ferromagnetic XXZ chain: Haldane dimer phase and gapped/gapless chiral phases. Phys. Rev. B 86, 094417 (2012).
Ueda, H. & Onoda, S. Roles of easy-plane and easy-axis XXZ anisotropy and bond alternation in a frustrated ferromagnetic spin-1/2 chain. Phys. Rev. B 101, 224439 (2020).
Igarashi, J. I. Ground state and excitation spectrum of a spin-1/2 Ising-like ferromagnetic chain with competing interactions. J. Phys. Soc. Japan 58, 4600–4609 (1989).
Tonegawa, T., Harada, I. & Igarashi, J. Ground-state properties of the one-dimensional anisotropic spin-1/2 Heisenberg magnet with competing interactions. Prog. Theor. Phys. Suppl. 101, 513–527 (1990).
Drechsler, S. L. et al. Frustrated cuprate route from antiferromagnetic to ferromagnetic spin-1/2 Heisenberg chains: Li2ZrCuO4 as a missing link near the quantum critical point. Phys. Rev. Lett. 98, 077202 (2007).
Sirker, J. Thermodynamics of multiferroic spin chains. Phys. Rev. B 81, 014419 (2010).
Furukawa, S., Sato, M. & Onoda, S. Chiral order and electromagnetic dynamics in one-dimensional multiferroic cuprates. Phys. Rev. Lett. 105, 257205 (2010).
Lake, B. et al. Confinement of fractional quantum number particles in a condensed-matter system. Nat. Phys. 6, 50–55 (2010).
Gannon, W. J. et al. Spinon confinement and a sharp longitudinal mode in Yb2Pt2Pb in magnetic fields. Nat. Commun. 10, 1123 (2019).
Wu, L. S. et al. Tomonaga–Luttinger liquid behavior and spinon confinement in YbAlO3. Nat. Commun. 10, 698 (2019).
Li, X. Y. et al. Neutron scattering study of the kagome metal. Phys. Rev. B 104, 134305 (2021).
Jacko, A. C., Fjærestad, J. O. & Powell, B. J. A unified explanation of the Kadowaki–Woods ratio in strongly correlated metals. Nat. Phys. 5, 422–425 (2009).
Doniach, S. The Kondo lattice and weak antiferromagnetism. Phys. B+C 91, 231–234 (1977).
Tsunetsugu, H., Sigrist, M. & Ueda, K. The ground-state phase diagram of the one-dimensional Kondo lattice model. Rev. Mod. Phys. 69, 809–863 (1997).
Nikolaenko, A. & Zhang, Y. H. Numerical signatures of ultra-local criticality in a one dimensional Kondo lattice model. SciPost Phys. 17, 034 (2024).
Classen, L., Zaliznyak, I. & Tsvelik, A. M. Three-dimensional non-Fermi-liquid behavior from one-dimensional quantum critical local moments. Phys. Rev. Lett. 120, 156404 (2018).
Laflorencie, N., Sørensen, E. S. & Affleck, I. The Kondo effect in spin chains. J. Stat. Mech. Theory Exp. 2008, P02007 (2008).
Schimmel, D. H., Tsvelik, A. M. & Yevtushenko, O. M. Low energy properties of the Kondo chain in the RKKY regime. New J. Phys. 18, 053004 (2016).
Scheie, A. et al. Erratum: Witnessing entanglement in quantum magnets using neutron scattering [Phys. Rev. B 103, 224434 (2021)]. Phys. Rev. B 107, 059902 (2023).
Rule, K. C., Mole, R. A. & Yu, D. Which glue to choose? A neutron scattering study of various adhesive materials and their effect on background scattering. J. Appl. Crystallogr. 51, 1766–1772 (2018).
Nakajima, K. et al. AMATERAS: a cold-neutron disk chopper spectrometer. J. Phys. Soc. Japan 80, SB028 (2011).
Kawakita, Y. et al. Recent progress on DNA ToF backscattering spectrometer in MLF, J-PARC. EPJ Web Conf. 272, 02002 (2022).
Inamura, Y., Nakatani, T., Suzuki, J. & Otomo, T. Development status of software ‘Utsusemi’ for chopper spectrometers at MLF, J-PARC. J. Phys. Soc. Japan 82, SA031 (2013).
Azuah, R. T. et al. DAVE: A comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data. J. Res. Natl Inst. Stand. Technol. 114, 341–358 (2009).
Blaha, P. et al. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992).
Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).
Alvarez, G. The density matrix renormalization group for strongly correlated electron systems: a generic implementation. Comput. Phys. Commun. 180, 1572–1578 (2009).
Nocera, A. & Alvarez, G. Spectral functions with the density matrix renormalization group: Krylov-space approach for correction vectors. Phys. Rev. E 94, 053308 (2016).
Nocera, A. & Alvarez, G. Root-N Krylov-space correction vectors for spectral functions with the density matrix renormalization group. Phys. Rev. B 106, 205106 (2022).